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Starting with an aspect group which is the observed nuclear magnetic resonance symmetry, an extended aspect- 
group technique is employed to construct the set of all Heesch groups corresponding to the given aspect group. 

Originally Heesch (1930) introduced a non-spatial double- 
valued quantity, thus generalizing the concept of symmetry 
which is found to be important  in the study of magnetic 
crystals (Donnay, Corliss, Donnay,  Elliott & Hastings, 
1958). Addition of the two-valued attribute which is identi- 
fied as the time-reversal operation (Shubnikov, 1951) pro- 
duced a generalization of 32 ordinary crystallographic point 
groups to 122 magnetic point groups (Donnay & Donnay,  
1959; Donnay,  1967) or Heesch groups (Riedel & Spence, 
1960), and 230 crystallographic space groups to 1651 mag- 
netic space groups (Opechowski & Guccione, 1965) or 
Shubnikov groups (Shubnikov & Belov, 1964). 

In a recent paper Spence & van Dalen (1968) have shown 
that the question as to whether the magnetic space group of 
a magnetically ordered crystal contains an anti-translation 
or anti-inversion can be answered by nuclear magnetic re- 
sonance. According to these authors, the criterion for an- 
swering the question depends on whether number of elements 
in two groups which they call the Heesch group and the aspect 
group is the same or differs by a factor of two. The Heesch 
group describes the symmetry of the array generated by 
translating the set of equivalent axial vectors scattered 
through the magnetic unit cell to a single point. In this 
sense a Heesch group is 'point-like', but it is important to 
note that such groups contain an anti-identity if the magnetic 
space group from which they were derived contains an anti- 
translation. The aspect group describes the symmetry of the 
same array of vectors as the Heesch group but treats the 
vectors as if they were polar rather than axial vectors. In 
other words, the aspect group is the symmetry that would be 
attributed to the same figure if the axial vectors were re- 
placed with polar vectors. 

The results of Spence & van Dalen are formulated in 
terms of the elements of Heesch groups which lead to the 
construction of an aspect group corresponding to a set of 
Heesch groups. The purpose of the pre.sent note is to point 
out that one can write down the set of Heesch groups corre- 
sponding to a given aspect group using the idea of extended 
aspect group. The set of extended aspect groups Gg with re- 
spect to a given group GQ is defined as the set which when 
one replaces centre of inversion T by the identity E will be 
identical with Ga. 

The way one can develop the technique is to classify the 
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32 aspect groups into three categories (Sumberg, Dayanidhi,  
Parker & Spence, 1972); the set of groups containing (i) 
only pure rotations (ii) a centre of inversion as an element by 
itself (iii) rotation and rotatory inversion axes. Then G,  ~ of 
G, consists of GQ, GQ + 1. G, and Gx + ]'. ( G , -  Gx) where Gx is 
any subgroup of G~ of index two (Lomont,  1959). It is im- 
portant  to note that in case (ii), by definition, G e consists of 
only one group G~, the given aspect group. 

Finally, the set of Heesch groups G~ corresponding to a 
given aspect group GQ is constructed for the three cases using 
Gg as the intermediate set of groups. 

In case (i) G] reduces to G e as there are no coloured or 
anti-elements in the Heesch groups and the 32 ordinary 
point groups or uncoloured Heesch groups thus belong to 
pure rotational aspect groups. 

In ease (ii) in which there is centre of inversion, Gn~ con- 
tains either 1', the time reversal or T' or both and all grey 
groups correspond to this type of aspect group. To obtain 
the set G an, consider G g whose only element is G, for this case 
and all its subgroups 'Gy' of index two with the criterion 
that by replacing T by E, Gy reduce to GR, the pure rotatio- 
nal invariant subgroup of index two of the given G, (Sum- 
berg et al., 1972). One obtains grey groups by adjoining time 
reversal to all of these groups and coloured Heesch groups 
by adding the coloured elements I ' . (G~-Gy) to each Gy. 
These grey and coloured groups together constitute the re- 
quired set G g. For  example, consider the aspect group 
4/mmm. The subgroups 'Gy' are 422, 4mm and ;g2m. Then 
G] is the set consisting of grey groups 422.1', 4mm.l', 
~2m. 1' and 4/mmm. 1' and coloured groups 4"/m'm'mC42m), 
4/m'mm(4mm) and 4/m'm'm'(422). For coloured groups, the 
corresponding Gr is given in paranthesis. 

In the third type of aspect group neither 1' nor"i" is present. 
Only coloured Heesch groups correspond to this kind of 
aspect group. Since set G.~ consists more than one group we 
choose Gy in accordance with the definition given earlier 
from each G e of G e. The coloured groups from Gy will be ob- 
tained in the usual manner, i.e. by adding the coloured ele- 
ments 1'. (G e -  Gy) to the corresponding Gy and they con- 
stitute the set of Heesch groups G] of the given G~. As an 
example, we take the aspect group 6mm. The elements or 
groups of the set G g are 6mm, 622 and 6/mmm. The sub- 
groups Gy' are given by 6, ~ and 6/m. Thus the set G n corre- 
sponding to 6mm consists of the colour groups: 6m'm'(6), 
62'2'(6), ~2'm'('6) and 6/mm'm'(6/m) which coincides with 
the list given by Spence & van Dalen (1968). 
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One can thus arrive at the set of Heesch groups noting to 
what the given aspect groups belongs. 

I wish to thank Professor R. D. Spence for his valuable 
assistance and suggestions. 
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The transformation laws for the weighting and covariance matrices of the components of the atomic vibra- 
tion tensors are derived. It is shown that the use of unit-weight matrices in the least-squares determination of 
the rigid-body vibration tensors TLS from the atomic vibration components leads to incompatible results 
when the TLS parameters are refined in different Cartesian coordinate systems. Numerical results for some 
molecules showed that the differences in the obtained components of TLS usually lie within the range of two 
standard deviations. If the covariances of the atomic vibration components are taken into account in some 
simple form the incompatibilities vanish. 

The components of the rigid-body vibration tensors TLS 
are usually determined from the components of the atomic 
vibration tensors Ur by means of the least-squares method. 
In the majority of cases a Cartesian coordinate systern and 
unit weights for the components U, ~k are used. With the 
structure of lithium succinate (Klapper & Kiippers, 1973) 
we first noticed that the principal components of the libra- 
tion tensor L were not uniquely determined when it was 
refined in two different Cartesian coordinate systems and 
unit weights were employed. The differences found between 
the respective principal components could not be ascribed 
to rounding-off errors. In this paper we shall give further 
examples where this happens. 

Discrepancies of this type arise because the unit matrix 
as weighting matrix does not transform into the unit matrix 
under rotation of axes. In an earlier paper (Scheringer, 
1966a) - hereafter referred to as SCHE - we stated the 
transformation law without proof for the 6 x 6 weighting 
matrices of the components U, ~k when the base vectors were 
transformed. Hirshfeld & Shmueli (1972) have recently 
derived the transformation law for the respective 6 x 6 co- 
variance matrices by reducing it to the transformation law 
of a 4th rank tensor. In this paper we want to show first 
how the transformation law can be obtained simply from 
the basic equations of the least-squares method. 

In SCHE we showed that the weighting matrix for the 
refinement of the parameters TLS should be the normal 
matrix M of a structure-factor least-squares refinement of 
the components U[ k. The covariance matrix C is then pro- 

portional to M-1. We now assume that in the last cycle of 
the structure-factor refinement we have only refined the 6n 
independent components U~ k of the n atoms of the (nearly) 
rigid molecule, i.e. we neglect all covariances to other types 
of parameters. Then M and C consist of n 2 6 x 6 blocks. 
We define the change of the coordinate system by the trans- 
formation 

X'= AX (1) 

of the (contravariant) components of a vector X in direct 
space. Then the (contravariant) components U~ k of the rth 
atom transform according to 

U~ = AUrA T, (2a) 

(Scheringer, 1966b). If we now arrange the 6 independent 
components U, s~ in a 6 x 1 column matrix V, in the sequence 
11, 22, 33, 12, 13, 23 then, by rearranging the terms in equa- 
tion (2a), it can be shown that the transformation law 

V~ = LV, (2b) 

corresponds to the law (2a). The elements of the 6 x 6 ma- 
trix L are given in SCHE. (Formally, L is obtained by re- 
ducing the 9 x 9 outer product A x A to a 6 x 6 matrix). The 
transformation laws (2a) and (2b) also hold for the shifts 
e~ k of the components U~ ~. Let the normal equations for 
refining the components U, ~k from diffraction data in the 
two coordinate systems be 

M a = N ,  M'a '=N' ,  (3) 


